纳米科学技术与纳米材料发展

  纳米科学技术与纳米材料发展

  20世纪80年代,纳米材料体系开始为科学家所关注,目前已成为跨世纪材料科学研究的热点。  纳米科学技术  纳米科学技术是在0.1~100 nm尺度上研究和应用原子、分子现象,并由此发展起来的多学科的、基础研究与应用研究紧密联系的新的科学技术.它是现代物理(介观物理、量子力学、混沌物理和分子生物学等)和先进工程技术(计算机、微电子和扫描隧道显微镜等技术)结合的产物.

     研究纳米科技的背景和意义:目前,人类广泛应用的功能材料和元件,其尺寸远大于电子自由程,观测的电子输运行为具有统计平均结果.描述这些性质的主要是宏观物理量,现已有成熟的理论和技术。当功能材料和元件的尺寸逐渐减小到纳米量级时,其物理长度与电子自由程相当,载流子的输运将有明显的量子力学特征,传统的理论和技术已不再适用。因而,需要发展基于电子的波动性、电子的量子隧道效应、电子能级的不连续性、量子尺寸效应和统计涨落等特性的新的理论和新的技术。传统科学技术中元件尺寸是从毫米向微米过渡,现在在新技术、新效应的应用中,功能元件的尺寸要求从微米向纳米过渡。如果再进一步发展,需要组装性能更新颖、结构更复杂的功能元件,就需要开发新材料和相应的组装技术,也就更需要多学科的协作与交叉发展。因此,从80年代后期开始逐渐发展起来了一个新的综合性的多学科交叉的研究领域———纳米科学技术。纳米科学技术的诞生将对生产力的发展产生深远的影响。并且有可能从根本上解决人类面临的一系列问题,例如粮食、健康、能源和环境保护等重大问题。

    纳米材料学: 纳米材料学是纳米科技领域中发展最为迅速的学科。纳米材料学主要研究纳米材料的制备、结构、性能及其应用等,是纳米科技与材料学交叉而成的边缘学科。纳米材料的特性,在生产实践中人们发现,如果将宏观尺度的物质微细化到纳米尺度,这种纳米颗粒在性能上就表现出与原宏观尺度物质完全不同的性质,人们将这种纳米颗粒称为“物质的新状态”。纳米物质之所以表现出这些奇异的性能,主要是由于物质进人纳米尺度后表现出了一些宏观物质不具备或在宏观物质中可忽略的物理效应。据目前人们对纳米颗粒的研究,这些效应主要有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等。表面效应,处于物质内部的粒子和处于物质表面的粒子其状态完全不同,后者具有很高的能量和化学活性,当物质的尺度进人纳米量级,纳米材料的表面效应可增加材料的化学活性、降低熔点等。利用这一特性可制作高效催化剂、敏感元件、用于高熔点材料冶金等。目前已成熟的粉末冶金法及无机材料行业在一定程度上就是利用了这一原理。 量子尺寸效应: 对于纳米粒子,能带中能级间隔增大;当能级间距大于热能、磁能、电能、光子能量或超导态的凝聚能时,物质就会呈现出一系列与宏观物质截然不同的反常特性,这就是量子尺寸效应。量子尺寸效应会导致纳米物质在磁、电、光、声、热以及超导性等方面表现出与宏观物质显著不同的特性。例如,导电的金属在纳米状态下变成绝缘体。小尺寸效应  当固态物质的粒子尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特性尺寸相当或更小时,晶体周期性边缘条件将破坏,非晶质的表面层附近原子密度减小,导致声、光、电、磁、热等特性发生显著改变,即谓之小尺寸效应。小尺寸效应为纳米物质的实用技术开拓了新领域,如果磁性物质当其处于纳米尺度时具有很高的矫顽力,可以制成磁卡,或制成磁性液体,广泛用于电声器件、阻尼器件、旋转密封、润滑、选矿等领域。 宏观量子随道效应:人们发现一些宏观的量如纳米颗粒的磁化强度、量子相干器中磁通量等亦显示出隧道效应,称之为宏观量子隧道效应。宏观量子隧道效应早期曾被用来解释纳米镍在低温下继续保持超顺磁性等,后来发现在许多纳米物质中普遍存在。量子尺寸效应和宏观量子隧道效应一起将会是未来电子器件的基础,一方面它指出了现有电子器件微型化的发展方向,同时又确定了其限度。 

  纳米材料的制备方法  制备高纯、超细、均匀的纳米微粒,发展新型的纳米材料,就显得格外重要。通常,纳米微粒制备的要求是:(l)表面洁净;(2)粒子形状及粒径、粒度分布可控,防止粒子团聚;(3)易于收集;(4)有较好的稳定性;(5)产率高。随着纳米微粒研究的深入,对纳米超细微粒提出了不同的物理、化学特性需求,而解决问题的关键就在于研究、发展新的合成技术,并实现纳米材料的规模化、产业化。纳米超细微粒的制备方法很多,总体上可分为物理方法和化学方法,以物料状态来分可归纳为固相法、液相法、气相法,进而发展、衍生出模板合成法。具体包括固相物质热分解法,物理粉碎法,高能球磨法,水热合成法,表面化学修饰法,化学沉淀法,胶体化学法,溶胶—凝胶法,电解法,激光加热蒸发法,气相等离子体沉积法等。合成的方法各有优缺点,通常存在的问题往往是反应需要高温、大量使用有机溶剂、过程控制复杂、设备操作费用昂贵、颗粒均匀性差、粒子容易粘结或团聚等。因此,需要根据对纳米材料的不同要求和特点,选择研究不同的合成方法。由纳米粉体制备具有极低密度、高强度的催化剂、金属催化剂载体以及过滤器等工艺有待改进。宇红纳米采用电爆法,是一种物理方法,具有产量高,活性高,杂质少,无污染等的特点。

    纳米技术的前景:现在很多国家,尤其是美国、日本和欧洲都非常重视发展纳米技术,他们在纳米技术研究和应用方面投人的经费成倍地增加,我国政府也十分重视纳米技术的基础研究和应用。据有些科学家分析,我国目前纳米技术的基础研究处于高速发展期。